Part Number Hot Search : 
030K1F MTZJ12 68HC705 BZT5232B 4752A RF150 FX589D 74LV14A
Product Description
Full Text Search
 

To Download IRG4PH40UD2-EP Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 95239
IRG4PH40UD2-EP
UltraFast IGBT optimized for high operating frequencies up to 200kHz in resonant mode IGBT co-packaged with HEXFREDTM ultrafast ultra-soft-recovery anti-parallel diode for use in resonant circuits Industry standard TO-247AD package with extended leads Lead-Free
Features
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
C
UltraFast CoPack IGBT
VCES = 1200V
G E
VCE(on) typ. = 2.43V
@VGE = 15V, IC = 21A
Benefits
n-channel
Applications
Higher switching frequency capability than competitive IGBTs Highest efficiency available HEXFRED diodes optimized for performance with IGBTs. Minimized recovery characteristics require less / no snubbing Induction cooking systems Microwave Ovens Resonant Circuits
TO-247AD
Parameter Max.
1200 41 21 82 82 10 40 20 160 65 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbfyin (1.1Nym)
Absolute Maximum Ratings
Units
V A Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector CurrentA Clamped Inductive Load current
VCES IC @ TC = 25C IC @ TC = 100C ICM ILM IF @ Tc = 100C IFM VGE PD @ TC = 25C PD @ TC = 100C TJ TSTG
d
Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Storage Temperature Range, for 10 sec. Mounting Torque, 6-32 or M3 screw
V W
C
Thermal / Mechanical Characteristics
Parameter
RJC RJC RCS RJA Wt Junction-to-Case- IGBT Junction-to-Case- Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
--- --- --- --- ---
Typ.
--- --- 0.24 --- 6 (0.21)
Max.
0.77 2.5 --- 40 ---
Units
C/W
g (oz.)
www.irf.com
1
7/27/04
IRG4PH40UD2-EP
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
Parameter
Collector-to-Emitter Breakdown Voltage V(BR)CES V(BR)ECS Emitter-to-Collector Breakdown Voltage V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage
eA 1200
18 -- -- -- -- 3.0 -- 16 -- -- -- -- --
Min. Typ. Max. Units
-- -- 0.43 2.43 2.97 2.47 -- -11 24 -- -- 3.4 3.3 --
Conditions
VCE(on) VGE(th) VGE(th)/TJ gfe ICES VFM IGES
Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Zero Gate Voltage Collector Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current
f
-- V VGE = 0V, IC = 250A -- V VGE = 0V, IC = 1.0A -- V/C VGE = 0V, IC = 1mA IC = 21A VGE = 15V 3.1 V IC = 41A -- See Fig.2, 5 IC = 21A, TJ = 150C -- VCE = VGE, IC = 250A 6.0 -- mV/C VCE = VGE, IC = 250A -- S VCE = 100V, IC = 21A 250 A VGE = 0V, VCE = 1200V VGE = 0V, VCE = 1200V, TJ = 150C 5000 3.8 V IF = 10A See Fig.13 IF = 10A, TJ = 150C 3.7 100 nA VGE = 20V
Switching Characteristics @ TJ = 25C (unless otherwise specified)
Parameter
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf ETS LE Cies Coes Cres trr Irr Qrr di(rec)M/dt Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Current Diode Reverse Recovery Charge Diode Peak Rate of Fall of Recovery During tb
Min. Typ. Max. Units
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 100 18 34 22 26 100 200 1950 1710 3660 21 25 220 380 6220 13 2100 99 12 50 72 4.4 5.9 130 250 210 180 150 24 50 -- -- 140 300 -- -- 4490 -- -- -- -- -- -- -- -- -- 76 110 7.0 8.8 200 380 -- -- nC
Conditions
IC = 21A VCC = 400V VGE = 15V See Fig.8
ns
J
IC = 21A, VCC = 800V VGE = 15V, RG = 10 Energy losses include "tail" and diode reverse recovery. See Fig. 9, 10, 11, 18 TJ = 150C, See Fig. 9, 10, 11, 18 IC = 21A, VCC = 800V VGE = 15V, RG = 10 Energy losses include "tail" and diode reverse recovery. Measured 5mm from package VGE = 0V VCC = 30V, See Fig.7 f = 1.0MHz
TJ=25C TJ=125C See Fig 14 See Fig 15 See Fig 16 See Fig 17 di/dt = 200A/s VR = 200V IF = 8.0A
ns
J nH pF ns A nC
TJ=25C TJ=125C TJ=25C TJ=125C
A/s TJ=25C
TJ=125C
2
www.irf.com
IRG4PH40UD2-EP
50 45 40
Square wave: 60% of rated voltage
I
Load Current ( A )
35 30 25 20 15 10 5 0 0.1 1 10
Ideal diodes
For both: Duty cycle : 50% Tj = 125C Tsink = 90C Gate drive as specified Power Dissipation = 35W
100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
100
I C , Collector-to-Emitter Current (A)
I C, Collector-to-Emitter Current (A)
TJ = 150 oC
10
10
TJ = 150 o C
TJ = 25 oC
TJ = 25 o C
1 1
V GE = 15V 20s PULSE WIDTH
10
1 5 6 7
V CC = 50V 5s PULSE WIDTH
8 9 10
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
IRG4PH40UD2-EP
50
4.0
40
VCE , Collector-to-Emitter Voltage(V)
VGE = 15V 80 us PULSE WIDTH
Maximum DC Collector Current(A)
IC = 42 A
3.0
30
IC = 21 A IC =10.5 A
2.0
20
10
0 25 50 75 100 125 150
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
TC , Case Temperature ( C)
TTJ Junction Temperature ( C C) J , , Junction Temperature ( )
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
1
Thermal Response (Z thJC )
D = 0.50
0.20 0.1 0.10 0.05 0.02 0.01 P DM t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.001 0.01 0.1 1
0.01 0.00001
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4PH40UD2-EP
4000 3500 3000
VGE, Gate-to-Emitter Voltage (V)
VGS = 0V, f = 1 MHZ C ies = C ge + C gd, C ce SHORTED C res = C gc C oes = C ce + C gc
20
VCE = 400V IC = 21A
16
Capacitance (pF)
2500 2000 1500
Cies
12
8
Coes
1000 500 0 1 10
4
Cres
0 0 20 40 60 80 100 120
VCE, Collector-toEmitter-Voltage(V)
QG, Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
5 4.8 VCE = 800V VGE = 15V TJ = 25C I C = 21A
100 R G = 10 VGE = 15V VCC = 800V
4.6 4.4 4.2 4 3.8 3.6 0
Total Switching Losses (mJ)
Total Swiching Losses (mJ)
I C = 42A 10 I C = 21A
I C = 10.5A
1
10 20 30 40 50
-60 -40 -20
0
20
40
60
80 100 120 140 160
RG, Gate Resistance ()
T J, Junction Temperature (C)
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
IRG4PH40UD2-EP
16 R G = 10 14 TJ = 150C VCE= 800V VGE = 15V
1000
12 10 8 6 4 2 0
I C , Collector-to-Emitter Current (A)
VGE = 20V T J = 125 oC
Total Swiching Losses (mJ)
100
10
SAFE OPERATING AREA
1
10 20 30 40 50
1
10
100
1000
10000
IC, Collecto-to-Emitter (A)
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4PH40UD2-EP
Fig. 14 - Typical Reverse Recovery vs. dif/dt
Fig. 15 - Typical Recovery Current vs. dif/dt
Fig. 16 - Typical Stored Charge vs. dif/dt
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
www.irf.com
7
IRG4PH40UD2-EP
90% Vge
Same type device as D.U.T.
+Vge
Vce
80% of Vce
430F D.U.T.
Ic
10% Vce Ic
90% Ic
5% Ic td(off) tf
Eoff =
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
Fig. 18a - Test Circuit for Measurement of
Vce Ic dt
t1+5S Vce ic dt t1
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T. 10% +Vg +Vg
trr Ic
Qrr =
Ic dt
trr id dt tx Vcc
tx 10% Vcc Vce 10% Ic 90% Ic DUT VOLTAGE AND CURRENT Ipk Ic
10% Irr
Vpk Irr
Vcc
DIODE RECOVERY WAVEFORMS td(on) tr 5% Vce t2 Vce Ic Eon = Vce ie dt dt t1 t2 DIODE REVERSE RECOVERY ENERGY t3
t4 Erec = Vd idIc dt Vd dt t3
t1
t4
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
8
www.irf.com
IRG4PH40UD2-EP
Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L 1000V 50V 6000F 100V Vc*
D.U.T.
RL= 0 - 800V
800V 4 X IC @25C
Figure 19. Clamped Inductive Load Test Circuit
Figure 20. Pulsed Collector Current Test Circuit
www.irf.com
9
IRG4PH40UD2-EP
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD Part Marking Information
EXAMPLE: T HIS IS AN IRGP30B120KD-E WIT H ASS EMBLY LOT CODE 5657 AS SEMB LED ON WW 35, 2000 IN T HE AS SEMBLY LINE "H" Note: "P" in as sembly line position indicates "Lead-Free" PART NUMB ER INT ERNAT IONAL RECT IFIER LOGO
56
035H 57
ASS EMBLY LOT CODE
DAT E CODE YEAR 0 = 2000 WEEK 35 LINE H
Notes:
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10H, RG= 10 (figure 19) Pulse width 80s; duty factor 0.1%. Pulse width 5.0s, single shot. TO-247AD package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 07/04
10
www.irf.com


▲Up To Search▲   

 
Price & Availability of IRG4PH40UD2-EP

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X